A breakthrough in quantum imaging could lead to the development of advanced forms of microscopy for use in medical research and diagnostics.

A team of physicists from the University of Glasgow and Heriot-Watt University have found a new way to create detailed microscopic images under conditions which would cause conventional optical microscopes to fail.

In a new paper published today in the journal Nature Photonics, the team describe how they have generated images by finding a new way to harness a quantum phenomenon known as Hong-Ou-Mandel (HOM) interference.

Named after the three researchers who first demonstrated it in 1987, HOM interference occurs when quantum-entangled photons are passed through a beam splitter – a glass prism which can turn a single beam of light into two separate beams as it passes through. Inside the prism, the photons can either be reflected internally or transmitted outwards.

When the photons are identical, they will always exit the splitter in the same direction, a process known as ‘bunching’. When the entangled photons are measured using photodetectors at the end of the path of the split beam of light, a characteristic ‘dip’ in the output probability graph of the light shows that the bunched photons are reaching only one detector and not the other.

That dip is the Hong-Ou-Mandel effect, which demonstrates the perfect entanglement of two photons. It has been put to use in applications like logic gates in quantum computers, which require perfect entanglement in order to work.

It has also been used in quantum sensing by putting a transparent surface between one output of the beam splitter and the photodetector, introducing a very slight delay into the time it takes for photons to be detected. Sophisticated analysis of the delay can help reconstruct details like the thickness of surfaces.

Now, the Glasgow-led team has applied it to microscopy, using single-photon sensitive cameras to measure the bunched and anti-bunched photons and resolve microscopic images of surfaces.

Extract from Glasgow University news - read more here

Posted in News

Cite Top